
Localization

Bayes Filter

Terminology:

Filters produce the estimated state of the system.

The system is what we are trying to model or filter.

The state is its current configuration or value.

Prior or Prediction: state after performing the prediction

Posterior: state after performing the measurement => prior and posterior are relative to the

measurement step

One cycle of prediction and updating with a measurement is called the state or system evolution,

which is short for time evolution. Another term is system propagation. It refers to how the state of

the system changes over time.

SciPy provides a convolution routine convolve() in the ndimage.filters module. We need to shift the

pdf by offset before convolution; np.roll() does that. The move and predict algorithm can be

implemented with one line: convolve(np.roll(pdf, offset), kernel, mode='wrap')

The problem of losing information during a prediction may make it seem as if our system would

quickly devolve into having no knowledge. However, each prediction is followed by an update where

we incorporate the measurement into the estimate. The update improves our knowledge. The output

of the update step is fed into the next prediction. The prediction degrades our certainty. That is

passed into another update, where certainty is again increased.

Mean, Variance and Standard Deviation

Mean

The expected value of a random variable is the average value it would have if we took an infinite

number of samples of it and then averaged those samples together. We can formalize this by letting 

 be the  value of , and  be the probability of its occurrence. This gives usx  i ith X p  i



A trivial bit of algebra shows that if the probabilities are all equal, the expected value is the same as

the mean:

If  is continuous we substitute the sum for an integral, like so

where  is the probability distribution function of .

Variance and Standard Deviation

The equation for computing the variance is

The variance is the expected value for how much the sample space  varies from the mean  (

.

The formula for the expected value is  so we can substitute that into the equation

above to get
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It is typical to use  for the standard deviation and  for the variance.

Gaussians

Objective:

it is typical to shorten the name and talk about a Gaussian or normal — these are both typical

shortcut names for the Gaussian distribution Let's explore how Gaussians work. A Gaussian is a

continuous probability distribution that is completely described with two parameters, the mean ( )

and the variance ( ). It is defined as:

 is notation for .

Don't be dissuaded by the equation if you haven't seen it before; you will not need to memorize or

manipulate it. The computation of this function is stored in `stats.py` with the function `gaussian(x,

mean, var, normed=True)`.

Shorn of the constants, you can see it is a simple exponential:

which has the familiar bell curve shape

The notation for a normal distribution for a random variable  is  where  means

distributed according to

An equivalent formation for a Gaussian is  where  is the mean and  the precision. 

; it is the reciprocal of the variance. While we do not use this formulation in this book, it

underscores that the variance is a measure of how precise our data is. A small variance yields large

precision — our measurement is very precise. Conversely, a large variance yields low precision — our

belief is spread out across a large area. You should become comfortable with thinking about

Gaussians in these equivalent forms. In Bayesian terms Gaussians reflect our belief about a

σ σ2

We desire a unimodal, continuous way to represent probabilities that models how the real

world works, and that is computationally efficient to calculate.
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measurement, they express the precision of the measurement, and they express how much variance

there is in the measurements. These are all different ways of stating the same fact.

The discrete Bayes filter works by multiplying and adding arbitrary probability distributions. The

Kalman filter uses Gaussians instead of arbitrary distributions, but the rest of the algorithm remains

the same. This means we will need to multiply and add Gaussians.

the sum of two independent Gaussians is another Gaussian The sum of two Gaussians is

given by

the product of 2 Gaussians is not Gaussian, but proportional to a Gaussian. There we can

say that the result of multipying two Gaussian distributions is a Gaussian function (recall

function in this context means that the property that the values sum to one is not guaranteed).

This is a key reason why Kalman filters are computationally feasible. Said another way, Kalman filters

use Gaussians because they are computationally nice.

The product of two independent Gaussians is given by:

Multivariate Gaussians

Covariance is short for correlated variances

The equation for the covariance between  and  is

Where  is the expected value of X, defined as
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We assume each data point is equally likely, so the probability of each is , giving

for the discrete case we will be considering.

Compare the covariance equation to the equation for the variance. As you can see they are very

similar:

We use a covariance matrix to denote covariances of a multivariate normal distribution, and it looks

like this:

Recall the equation for the normal distribution:

Here is the multivariate normal distribution in  dimensions.
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The correlation between two variables can be given a numerical value with Pearson's Correlation

Coefficient. It is defined as

This value can range in value from -1 to 1. If the covariance is 0 than . A value greater than 0

indicates that the relationship is a positive correlation, and a negative value indicates that there is a

negative correlation. Values near -1 or 1 indicate a very strong correlation, and values near 0 indicate

a very weak correlation.

Correlation and covariance are very closely related. Covariance has units associated with it, and

correlation is a unitless ratio.

We can use scipy.stats.pearsonr  function to compute the Pearson coefficient. It returns a tuple

of the Pearson coefficient and of the 2 tailed p-value.

One Dimensional Kalman Filters

The equations for the univariate Kalman filter are:
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Multivariate Kalman Filters

Reminder: correlation between variables drastically improves the posterior (e.g. tracking position and

velocity, even if only position is measured - via a radar for example)

Kalman Filter Algorithm

Initialization

1. Initialize the state of the filter 

2. Initialize our belief in the state 

Predict

1. Use process model to predict state at the next time step 

2. Adjust belief to account for the uncertainty in prediction     

Update

1. Get a measurement and associated belief about its accuracy 

2. Compute residual between estimated state and measurement 

3. Compute scaling factor based on whether the measurement 

or prediction is more accurate 

4. set state between the prediction and measurement based  

on scaling factor 

5. update belief in the state based on how certain we are  

in the measurement 

Predict  

 

 



  

 

 

 

Without worrying about the specifics of the linear algebra, we can see that:

 are the state mean and covariance. They correspond to  and .

 is the state transition function. When multiplied by  it computes the prior.

 is the process covariance. It corresponds to .

 and  are new to us. They let us model control inputs to the system.

Update  

 

 

 

 

  

 

 

 

 

 

 

 is the measurement function. We haven't seen this yet in this book and I'll explain it later. If you

mentally remove  from the equations, you should be able to see these equations are similar as

well.
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 are the measurement mean and noise covariance. They correspond to  and  in the

univariate filter (I've substituted  with  for the univariate equations to make the notation as similar

as possible).

 and  are the residual and Kalman gain.

The details will be different than the univariate filter because these are vectors and matrices, but the

concepts are exactly the same:

Use a Gaussian to represent our estimate of the state and error

Use a Gaussian to represent the measurement and its error

Use a Gaussian to represent the process model

Use the process model to predict the next state (the prior)

Form an estimate part way between the measurement and the prior

Your job as a designer will be to design the state , the process , the measurement 

, and the measurement function . If the system has control inputs, such as a robot, you will

also design  and .

Unscented Kalman Filter

Generate sigma points

The number of sigma points depends on the state dimension: 2n + 1 (mean + 2 points by dimension)

z, R z σ  z
2

μ x

y K

x,P( ) F,Q( )

z,R( ) H
B u



Predict sigma points

Predict Mean and Covariance


