
Markov:

a Markov process or markov chain is a memoryless random process, i.e. a sequence
of random states  with the Markov property.
a Markov Reward Process (MRP) is a Markov chain with values. It is a tuple 

A Markov Decision Process (MDP) is a MRP with decisions. It is an environment
where all states are Markov.

Process Tuple

Markov Process / Chain <S,P>

Markov Reward Process (MRP) <S,P,R, >

Markov Decision Process (MDP) <S,A,P,R, >

Partially Observable MDP <S,A,O,P,R,Z, >

with:

S is a finite set of states
A is a finite set of actions
O is a finite set of observations
P is a state transition probability matrix, 
R is a reward function, 
Z is an observation function, 

 is a discount factor  [0, 1]

Part I: Elementary Reinforcement Learning

0. Introduction to Reinforcement Learning (RL)

Definitions
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Rewards:

a scalar feedback signal . It indicates how well agent is doing at step t. The agent's
job is to maximize cumulative rewards.
Reward hypothesis: all goals can be described by the maximization of expected
cumulative rewards. Reinforcement learning is based on the reward hypothesis.

History: sequence of observations, actions, rewards 

Agent selects the actions and the environment selects observations / rewards

Formally, the state is a function of the history - . Many states exist:

environement state : the environment's private representation. Usually not visible to
the agent.
agent's state : the agent's internal representation
a state  is Markov if and only if  , i.e. history
does not matter

A policy is the agent's behavior, a map from state to action.

Deterministic policy: 
Stochastic policy:  = a probability distribution over actions
given states.

on-policy learning: learn about policy  from experience sampled from policy 

off-policy learning: learn about policy  f from experience sampled from another policy 

-greedy methods/policy consist in behaving greedily (picking the action with highest value)
most of the time but select randomly with a probability  from among all the actions
(including the highest value) with equal probability (independently of the action-value
estimates).

 if  Note that the probability of picking the

highest value is higher than  as it can still be picked randomly.
 otherwise

a model predicts what the environment will do next: transition from state to state and
prediction of the next immediate reward. We say that the agent has an internal
representation of the environment, called the model.
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Prediction problems: evaluate the future given a policy

Control problems: optimize the future by finding the best policy



Sequential decision-making problems have the following characteristics:

Goal: select actions to maximise total future rewards
Actions: may have long term consequences
Reward: may be delayed - immediate reward vs. long-term reward trade-off

Two fundamental problems in sequential decision making

Reinforcement Learning:

The environment is initially unknown
The agent interacts with the environment
The agent improves its policy

Planning:

A model of the environment is known
The agent performs computations with its model (without any external interaction)
The agent improves its policy
a.k.a. deliberation, reasoning, introspection, pondering, thought, search

A sequential decision problem for a fully observable, stochastic environment with a Markovian
transition model and additive rewards is called a Markov decision process, or MDP, and
consists of:

a set of states (with an initial state );
a set ACTIONS(s) of actions ​in each state A(s), A;
a transition model T (s,a,s') ~ P (s' | s, a);
a reward function R(s).

 a discount factor

Therefore, a solution must specify what the agent should do for any state that the agent might
reach. A solution of this kind is called a policy.

It is traditional to denote a policy by , and  is the action recommended by the policy  for
state s. If the agent has a complete policy, then no matter what the outcome of any action, the
agent will always know what to do next.

An optimal policy is a policy that yields the highest expected utility. We use π∗ to denote an

1. Sequential Decision Problems
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optimal policy. Given π∗, the agent decides what to do by consulting its current percept, which
tells it the current state s, and then executing the action π∗(s) 

Note: a policy does not describe a plan but tells us what to do next in a given state. We can still
infer a plan based on a policy.

Utilities over time:

the optimal policy for a finite horizon is non-stationary, i.e. the optimal action in a given state
could change over time
the optimal policy for a infinite horizon is stationary (no reason to behave differently)

We call stationary preferences the fact that, given 2 utilities of sequences V1 and V2, 
 and : if V1 > V2, then 

Under stationarity, there are 2 coherent ways to assign utilities to sequences (of states):

Additive rewards: 
Discounted rewards 

The optimal policy is the policy that maximizes the expected future rewards (by following the
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Fundamental principles / Formulas

Utility (U), State value (V), State-Action value (Q)



action at each state, returned by the policy)

The value (or true utility) of a state given a policy is the expected rewards we'll get by following
the policy

For each state, the optimal policy returns the action that maximizes the weighted value of the
next state

The value or true utility of a state is the immediate reward and the discounted future rewards
(Bellman equation)

It can also be written as:

a value function V of a state (or state-value function) Formally, the state-value function of
an MDP is the expected returm starting from state s, and then following policy 

a quality function Q (value of an action) or action-value function Formally, the action-value
function of an MDP is the expected returm starting from state s, taking action a, and then
following policy 

a continuity function
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By unrolling the equations above, we obtain:

The optimal state-value function  is the maximum value function over all policies 

1. Bellmann Equations (MDPs only)

Bellmann Expectation Equation
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The optimal action-value function  is the maximum value function over all policies 

A MDP is "solved" when we know the optimal value function.

Note that there can be more than 1 optimal policy. They all get the same optimal value functions.

An optimal policy can be found by optimizing over 

= 1 if 

= 0 otherwise

There is always a deterministic optimal policy for any MDP.

By unrolling the equations above, we obtain:

]
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Bellman Optimality Equation is non-linear. No closed form solution (in general) Many iterative
solution methods exist:

Value Iteration (DP)
Policy Iteration (DP)
Q-learning (off-policy TD control)
Sarsa (on-policy TD control)

We usually use Bellmann expectation equation to do policy evaluation and the Belllmann
optimality equation for control.

From the most to the least supervised and from the least to the most direct learning

Model-based: from , learns the transition model and calculates Q* through a MDP solver
and then a policy
Value-function based or model-free: from , directly learns the Q*
policy search: from , directly learns the policy

Typology of RL algorithms



The term dynamic programming (DP) refers to a collection of algorithms that can be used to
compute optimal policies given a perfect model of the environment as a Markov decision
process (MDP). Classical DP algorithms are of limited utility in reinforcement learning both
because of their assumption of a perfect model and because of their great computational
expense, but they are still important theoretically. More useful methods attempt to achieve much
the same effect as DP, only with less computation and without assuming a perfect model of the
environment.

Dynamic programming is a very general solution method for problems with 2 properties:

Optimal substructure
Principle of optimality
Optimal solution can be decomposed into subproblems

Overlapping subproblems
Subproblems recur many times
Solutions can be cached and reused

MDP satisfy both properties:

Bellman equation gives recursive decomposition
Value function stores and reuses solutions

Evaluating a policy consists in the iterative application of Bellmann expectation equation.

Synchronous backups: at each iteration k+1, for all states, update  from  where s'
is a successor state of s.

Given a policy ,

evaluate the policy  (until it converges)
improve the policy by acting greedly with respect to 

This process of policy iteration always converges to 

2. Planning by Dynamic Programming (DP)

Policy evaluation
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The generalised policy iteration principle is that any algorithm can be used for policy evaluation
and policy improvement.

Modified policy iteration: stop the iteration before convergence. For example, stop after k
iterations of policy evaluation. Value iteration consists in stopping after 1 iteration, i.e 1 iteration
of policy evaluation, 1 iteration of policy improvement, 1 iteration of policy evaluation...

Value iteration



The iteration consists in 2 steps:

calculating the value function for each action in order to extract the best action.
selecting the maximum [acting greedily]

Intermediate value functions may not correspond to any policy.



Prediction addresses the question of how good is a given policy Control optimizes the rewards
and finds the optimal policy. Complexity is higher if we use the Q-value function because we
move from state-action pair to state-action pair (nm x nm) whereas with V-value, we move from
state to state and consider all the actions (n x m x m)

Asynchronous means we update each selected state individually, in any order. If all states
continue to be selected, it will converge.

Several methods exist:

In-place DP (it stores only 1 value function vs. 2 for synchronous)
Prioritised sweeping (Use magnitude of Bellman error to guide state selection)
Real-time DP (only states that are relevant to agent)

Iterative policy evaluation converges to  - we also say that  converges to a unique
fixed point of the Bellmann expectation operator 

Asynchronous Dynamic programming

Convergence

vπ vπ
T π



Iterative policy iteration and iterative value iteration converge to vπ



Dynamic programming is useful to solve a (small) known MDP. Model-Free prediction methods
aim at solving unknown MDPs.

MC methods learn directly from episodes of experience
MC is model-free: no knowledge of MDP transitions / rewards
MC learns from complete episodes: no bootstrapping
MC uses the simplest possible idea: value = mean return
Caveat: can only apply MC to episodic MDPs (all episodes must terminate)

Monte-Carlo policy evaluation uses empirical mean return instead of expected return.

V(S) = S(s) / N(s) with S(s)+= , the increment total return for state s and N(s)+=1 the
increment counter. V(s) ->  as N(s) 

First-visit MC Policy Evaluation: mean return calculated with only 1 visit per episod
Every-visit MC Policy Evaluation: mean return calculated with several visits per episod

Incremental MC updates consists in tracking a running mean (forget old episodes).

Incremental mean : 

In general, new_estimate<-- old_estimate + step_size [target - old_estimate]

TD methods learn directly from episodes of experiences. TD learns from incomplete episodes
(contrary to MC that requires full episodes), by bootstrapping. TD updates a guess towards a
guess.

MC has high variance (because of the high variance of the return), zero bias (unbiased estimate
of (s))

Good convergence properties
(even with function approximation) Not very sensitive to initial value Very simple to
understand and use
MC does not exploit Markov property (Usually more effective in non-Markov environments)

3. Model-Free Prediction
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MC converges to solution with minimum mean-squared error, i.e. best fit to the observed
returns 

TD has low variance (because only dependent on the variance on one random action, transition,
reward), some bias (TD target is biased estimate of 

Usually more efficient than MC
TD(0) converges to 
(but not always with function approximation)
More sensitive to initial value
TD exploits Markov property (Usually more efficient in Markov environments)
TD(0) converges to solution of max likelihood Markov model

Solution to the MDP ⟨S, A, P, R, γ⟩ that best fits the data

Method Bootstrapping Sampling

Dynamic Programming Yes No

Monte Carlo No Yes

Temporal Difference Yes Yes

Visually, boostrapping = depth of the tree; sampling = width of the tree
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Finds maximum-likelihood estimate (if finite data repeated infinitely often)

Algorithm:

Episode T: For all s, at start of episode, 

For all s = ,

then: 

 if 2 conditions about are met (Robbins-Monro sequence of step-sizes):

TD(0) Update Rule
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We assume:

 states with reward  between state  and 
learning rate 
e(s) is called the eligibility rate

Algorithm:

Episode T

For all s, e(s) = 0 at start of episode, 

After , reward : (Step k)

For all s,

For all k: 

TD(1) is equivalent to outcome-based updates without repeated states with  += 

The principle is to combine different returns with n-step look-ahead,  through a weighted
sum. The weight is 

Forward-view  : 
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Episode T

For all s, e(s) = 0 at start of episode, 

After , reward : (Step k)

For all s,

For all k: 

 = TD(0) [1-step estimator]
 = [2-step estimator]

...
 = [k-step

estimator]
 = TD(1) = [infinite-step

Backward view implementation (eligibility traces)
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e( ) = e( ) + 1sk−1 sk−1
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e(s) = λ. γ. e(s)

K-Step Estimators
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estimator]

V(S) estimated as a weighted combination of step estimators, with weights = 

Empirically, we can observe that error in V after finite data is:

highest for TD(1) but lower for TD(0)
lowest for  between 0.3 and 0.7

K-Step Estimators and TD(λ)

(1 − λ)λt−1

λ



For most of RL problems, either:

MDP model is unknown but experience can be sampled
MDP model is known, but is too big to use, except by samples

On-policy learning describes learning about policy  from experience sampled from , unlike
off-policy learning which learns from experience sampled from another policy .

We cannot use the greedy policy improvement over V(s) because it requires a model of
MDP  ; So we'll use Q(s,a) instead => 

We need to maintain some level of exploration. So we'll use a -greedy policy improvement
approach.

4. Model-Free Control

π π
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On-policy learning

Generalisated policy iteration (GPI) with Monte-Carlo evaluation: 2 issues:
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The question of this approach is how to balance the need for exploration and the fast
convergence into a policy that does not explore anymore. GLIE is an idea to come up with a
schedule of exploration to manage this balance (e.g. decaying  by 1/k).ϵ

GLIE Monte-Carlo Control



Here's below one algorithm where we iterate, for every episode, evaluation and improvement -
note this is much more efficient than generating thousands of episodes before evaluating the
policy (i.e. we can even improve the policy with a single episode):



The main advantage vs. MC is to imcrease the frequency of the policy improvement - will be
done every time-step, instead of at the end of each episode in MC.

The general idea is called SARSA. SARSA name came from the fact that agent takes one step
from one state-action value pair to another state-action value pair and along the way collect
reward R (so it's the , , ,  and  tuple that creates the term S,A,R,S,A). SARSA
is an on-policy method. SARSA use action-value function Q and follow the policy . GPI
(Generalized Policy Iteration) is used to take action based on policy  ( -greedy to ensure
exploration as well as greedy to improve the policy).

TD learning
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Update Formula:

Convergence of SARSA

Q( , ) = Q( , ) + α( + γ. Q( , ) − Q( , ))St At St At Rt+1 St+1 At+1 St At



SARSA-  Forward-view

SARSA-  Backward-view

λ

λ



Evaluate target policy  to compute  or  while following behaviour policy 
. 2 mechanisms:

importance sampling:

for off-policy MC: extremely high-variance and in practice useless

for off-policy TD: works better than MC 

Off-policy learning

π(a/s) (s)vπ (s, a)qπ
μ(a/s)



Q-learning: this is the method that works the best 



This Q-learning algorithm for control is also called SARSAMAX as it combines SARSA approach
and the greedy policy.



There is also the expected SARSA algorithm where we replace the max operation by the
expected value of the q_value of the pair next state, next action.



Comparison of RL policy evaluation

DP and TD





for MRPs (NO ACTION YET!):  

Matrix Form

Appendix

Bellmann Equations for MRPs
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So the Bellmann equation is a linear equation that can be solved directly (matrix inversionn)

This direct solution is only possible for small MRPs. For large MRPs, there are many iterative
methods: Dynamic programming, Monte Carlo, Temporal-Difference learning

stationary environment:

non-stationary environment:

It is a weighted average of past rewards and the initial estimate  with  

Supervised learning is equivalent to finding a function f based on x,y pair - y = f(x). Also
called function approximation

v = R + γP. v

v = (1 − γ. P . R)−1

k-bandit problem
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Comparison with supervised and unsupervised learning



Unupervised learning is equivalent to finding a function f based on x input data only. Also
called clustering description
Reinforcement learning consists in finding a function, called an optimal policy π* , based on
a set of input data (s,a) and rewards z = r for each (s,a) pair. y = f(x) <=> a = π*(s). Main
differences:

There is no supervisor, only a reward signal.
Feedback is delayed, not instantaneous
Time really matters
Agent takes actions and influences its environment

Extensions to MDPs
Infinite and continuous MDPs
Partially Observable Markov Decision Process
Belief States (Lecture 2- UCL (David Silver)
Ergodic Markov Process (Lecture 2- UCL (David Silver)
Average Reward Value Function (Lecture 2- UCL (David Silver)

repository for RL algorithms:
ShangTong Zhang
Denny Britz

David Silver courses: https://www.davidsilver.uk/teaching/

Going Further
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