Part II: Reinforcement Learning in Practice ### 1. Value Function Approximation Problem with large MDPs: there are too many states and/or actions to store in memory. It is too slow to learn the value of each state individually #### **Solution for large MDPs:** - Estimate value function with function approximation - $\circ \hat{v}(s, w) \approx v_{\pi}(s)$ - \circ or $\hat{q}(s, a, w) \approx q_{\pi}(s, a)$ - Generalise from seen states to unseen states - Update parameter w using MC or TD learning A function can either approximate: - the state value function. input s; output: approx value of v(s) - the state action value function with: - EITHER input state s and action a; output: approx. value of q(s,a) (ACTIONS IN architecture) - OR input state s only; output: all the values of q(s,a) (ACTIONS OUT architecture) Function approximators can be linear combinations of features, neural networks, decision tree, nearest neighbour, Fourier / wavelet bases... Here, we'll consider differentiable function approximators: linear combinations of features and neural networks. Furthermore, we require a training method that is suitable for non-stationary, non-iid data (the policy can evolve and improve during training) #### Incremental methods #### **Gradient Descent** ### **Gradient Descent** - Let J(w) be a differentiable function of parameter vector w - Define the gradient of $J(\mathbf{w})$ to be $$abla_{\mathbf{w}}J(\mathbf{w}) = egin{pmatrix} rac{\partial J(\mathbf{w})}{\partial \mathbf{w}_1} \ dots \ rac{\partial J(\mathbf{w})}{\partial \mathbf{w}_n} \end{pmatrix}$$ - To find a local minimum of $J(\mathbf{w})$ - Adjust w in direction of -ve gradient $$\Delta \mathbf{w} = -\frac{1}{2} \alpha \nabla_{\mathbf{w}} J(\mathbf{w})$$ where α is a step-size parameter ### Value Function Approx. By Stochastic Gradient Descent ■ Goal: find parameter vector \mathbf{w} minimising mean-squared error between approximate value fn $\hat{v}(s, \mathbf{w})$ and true value fn $v_{\pi}(s)$ $$J(\mathbf{w}) = \mathbb{E}_{\pi} \left[(v_{\pi}(S) - \hat{v}(S, \mathbf{w}))^2 \right]$$ Gradient descent finds a local minimum $$egin{aligned} \Delta \mathbf{w} &= - rac{1}{2} lpha abla_{\mathbf{w}} J(\mathbf{w}) \ &= lpha \mathbb{E}_{\pi} \left[(v_{\pi}(S) - \hat{v}(S, \mathbf{w})) abla_{\mathbf{w}} \hat{v}(S, \mathbf{w}) ight] \end{aligned}$$ ■ Stochastic gradient descent samples the gradient $$\Delta \mathbf{w} = \alpha(\mathbf{v}_{\pi}(S) - \hat{\mathbf{v}}(S, \mathbf{w})) \nabla_{\mathbf{w}} \hat{\mathbf{v}}(S, \mathbf{w})$$ Expected update is equal to full gradient update #### **Feature Vector** We represent state by a feature vector (a compact way to represent the state): $$x(s) = \begin{pmatrix} x_1(s) \\ \vdots \\ x_n(s) \end{pmatrix}$$ ### **Incremental Prediction Algorithm** # Linear Value Function Approximation Represent value function by a linear combination of features $$\hat{v}(S, \mathbf{w}) = \mathbf{x}(S)^{\top} \mathbf{w} = \sum_{j=1}^{n} \mathbf{x}_{j}(S) \mathbf{w}_{j}$$ Objective function is quadratic in parameters w $$J(\mathbf{w}) = \mathbb{E}_{\pi} \left[(v_{\pi}(S) - \mathbf{x}(S)^{\top} \mathbf{w})^2 \right]$$ - Stochastic gradient descent converges on global optimum - Update rule is particularly simple $$abla_{\mathbf{w}}\hat{\mathbf{v}}(S,\mathbf{w}) = \mathbf{x}(S)$$ $$\Delta \mathbf{w} = \alpha(\mathbf{v}_{\pi}(S) - \hat{\mathbf{v}}(S,\mathbf{w}))\mathbf{x}(S)$$ $\mathsf{Update} = \mathit{step\text{-}\mathit{size}} \times \mathit{prediction} \ \mathit{error} \times \mathit{feature} \ \mathit{value}$ Summary of targets used: | Method | Target | Update | Specificities | |----------------|--|--|---| | Generalization | $v_{\pi}(s)$ | $\nabla w = \alpha. [v_{\pi}(s) - \hat{v}(S, w)]. \nabla_{w} \hat{v}(S, w)$ | 1 | | Monte-Carlo | G_t | $\nabla w = \alpha. [G_t - \hat{v}(S_t, w)]. \nabla_w \hat{v}(S_t, w)$ | Monte-Carlo
evaluation
converges to
a local
optimum | | TD (0) | $R_{t+1} + \gamma.\hat{v}(S_{t+1}, w)$ | $\nabla w = \alpha. [R_{t+1} + \gamma. \hat{v}(S_{t+1}, w) - \hat{v}(S_t, w)]. \nabla_w \hat{v}(S_t, w)$ | Linear TD(0) converges (close) to global optimum | | $TD(\lambda)$ | G_{t+1} | $\nabla w = \alpha. [G_t^{\lambda}(S) - \hat{v}(S, w)]. \nabla_w \hat{v}(S_t, w)$ | xxx | Replace $\nabla_w \hat{v}(S_t, w)$ by S_t for linear functions ## $\mathsf{TD}(\lambda)$ with Value Function Approximation - The λ -return G_t^{λ} is also a biased sample of true value $v_{\pi}(s)$ - Can again apply supervised learning to "training data": $$\langle S_1, G_1^{\lambda} \rangle, \langle S_2, G_2^{\lambda} \rangle, ..., \langle S_{T-1}, G_{T-1}^{\lambda} \rangle$$ Forward view linear $TD(\lambda)$ $$\Delta \mathbf{w} = \alpha(\mathbf{G}_t^{\lambda} - \hat{v}(S_t, \mathbf{w})) \nabla_{\mathbf{w}} \hat{v}(S_t, \mathbf{w})$$ $$= \alpha(\mathbf{G}_t^{\lambda} - \hat{v}(S_t, \mathbf{w})) \mathbf{x}(S_t)$$ ■ Backward view linear $TD(\lambda)$ $$egin{aligned} \delta_t &= R_{t+1} + \gamma \hat{v}(S_{t+1}, \mathbf{w}) - \hat{v}(S_t, \mathbf{w}) \ E_t &= \gamma \lambda E_{t-1} + \mathbf{x}(S_t) \ \Delta \mathbf{w} &= lpha \delta_t E_t \end{aligned}$$ **Incremental Control Algorithm** # Incremental Control Algorithms - Like prediction, we must substitute a target for $q_{\pi}(S,A)$ - For MC, the target is the return G_t $$\Delta \mathbf{w} = \alpha (\mathbf{G_t} - \hat{q}(\mathbf{S_t}, \mathbf{A_t}, \mathbf{w})) \nabla_{\mathbf{w}} \hat{q}(\mathbf{S_t}, \mathbf{A_t}, \mathbf{w})$$ ■ For TD(0), the target is the TD target $R_{t+1} + \gamma Q(S_{t+1}, A_{t+1})$ $$\Delta \mathbf{w} = \alpha (R_{t+1} + \gamma \hat{q}(S_{t+1}, A_{t+1}, \mathbf{w}) - \hat{q}(S_t, A_t, \mathbf{w})) \nabla_{\mathbf{w}} \hat{q}(S_t, A_t, \mathbf{w})$$ ■ For forward-view TD(λ), target is the action-value λ -return $$\Delta \mathbf{w} = \alpha (\mathbf{q}_t^{\lambda} - \hat{\mathbf{q}}(S_t, A_t, \mathbf{w})) \nabla_{\mathbf{w}} \hat{\mathbf{q}}(S_t, A_t, \mathbf{w})$$ • For backward-view $TD(\lambda)$, equivalent update is $$egin{aligned} \delta_t &= R_{t+1} + \gamma \hat{q}(S_{t+1}, A_{t+1}, \mathbf{w}) - \hat{q}(S_t, A_t, \mathbf{w}) \ E_t &= \gamma \lambda E_{t-1} + abla_{\mathbf{w}} \hat{q}(S_t, A_t, \mathbf{w}) \ \Delta \mathbf{w} &= \alpha \delta_t E_t \end{aligned}$$ ### Convergence TD does not follow the gradient of any objective function This is why TD can diverge when off-policy or using non-linear function approximation. Gradient TD follows true gradient of projected Bellman error. # Gradient Temporal-Difference Learning - TD does not follow the gradient of any objective function - This is why TD can diverge when off-policy or using non-linear function approximation - Gradient TD follows true gradient of projected Bellman error | On/Off-Policy | Algorithm | Table Lookup | Linear | Non-Linear | |---------------|--------------------|--------------|----------|--------------| | On Dalian | MC | ✓ | ✓ | √ | | On-Policy | TD | ✓ | ✓ | × | | | Gradient TD | ✓ | ✓ | \checkmark | | Off Dalies | MC | ✓ | ✓ | √ | | Off-Policy | TD | ✓ | X | × | | | Gradient TD | ✓ | ✓ | ✓ | # Convergence of Control Algorithms | Algorithm | Table Lookup | Linear | Non-Linear | |---------------------|--------------|-------------|------------| | Monte-Carlo Control | ✓ | (✓) | × | | Sarsa | ✓ | (✓) | × | | Q-learning | ✓ | X | × | | Gradient Q-learning | ✓ | ✓ | X | (\checkmark) = chatters around near-optimal value function #### **Batch Methods** Gradient descent is simple and appealing but it is not sample efficient. Batch methods seek to find the best fitting value function given the agent's experience ("training data"). #### **Least Squares Prediction** ### **Least Squares Prediction** - Given value function approximation $\hat{v}(s, \mathbf{w}) \approx v_{\pi}(s)$ - And experience \mathcal{D} consisting of $\langle state, value \rangle$ pairs $$\mathcal{D} = \{\langle s_1, v_1^{\pi} \rangle, \langle s_2, v_2^{\pi} \rangle, ..., \langle s_T, v_T^{\pi} \rangle\}$$ - Which parameters **w** give the best fitting value fn $\hat{v}(s, \mathbf{w})$? - Least squares algorithms find parameter vector \mathbf{w} minimising sum-squared error between $\hat{v}(s_t, \mathbf{w})$ and target values v_t^{π} , $$egin{aligned} LS(\mathbf{w}) &= \sum_{t=1}^T (v_t^\pi - \hat{v}(s_t, \mathbf{w}))^2 \ &= \mathbb{E}_{\mathcal{D}}\left[(v^\pi - \hat{v}(s, \mathbf{w}))^2 ight] \end{aligned}$$ There exists a very simple solution to find the value function approximator (i.e the parameter vector w so that $w^{\pi} = \underset{w}{argmin} \ LS(w)$). It consists in sampling state, value from experience, i.e. randomizing the state value (instead of going step by step in the incremental method - the effect is the decorrelation across time-steps) and re-using experience data multiple times. # Stochastic Gradient Descent with Experience Replay Given experience consisting of *(state, value)* pairs $$\mathcal{D} = \{\langle s_1, v_1^{\pi} \rangle, \langle s_2, v_2^{\pi} \rangle, ..., \langle s_T, v_T^{\pi} \rangle\}$$ Repeat: 1 Sample state, value from experience $$\langle s, v^{\pi} \rangle \sim \mathcal{D}$$ 2 Apply stochastic gradient descent update $$\Delta \mathbf{w} = \alpha (\mathbf{v}^{\pi} - \hat{\mathbf{v}}(\mathbf{s}, \mathbf{w})) \nabla_{\mathbf{w}} \hat{\mathbf{v}}(\mathbf{s}, \mathbf{w})$$ Converges to least squares solution $$\mathbf{w}^{\pi} = \underset{\mathbf{w}}{\operatorname{argmin}} \ LS(\mathbf{w})$$ **DQN (Deep Q-Networks)** DQN uses experience replay and fixed Q-targets. # Experience Replay in Deep Q-Networks (DQN) ### DQN uses experience replay and fixed Q-targets - Take action a_t according to ϵ -greedy policy - Store transition $(s_t, a_t, r_{t+1}, s_{t+1})$ in replay memory \mathcal{D} - Sample random mini-batch of transitions (s, a, r, s') from \mathcal{D} - Compute Q-learning targets w.r.t. old, fixed parameters w^- - Optimise MSE between Q-network and Q-learning targets $$\mathcal{L}_i(w_i) = \mathbb{E}_{s,a,r,s'\sim\mathcal{D}_i}\left[\left(r + \gamma \max_{a'} Q(s',a';w_i^-) - Q(s,a;w_i)\right)^2 ight]$$ Using variant of stochastic gradient descent #### Note that: - for every batch, we compute the Q-learning target w.r.t old, fixed parameters w^- , which stabilizes the learning process. If we use the same network, it would be unstable. Every x iterations, we replace the old network (with fixed parameters w^-) by the current network. - we optimize MSE between Q-network (live parameters) and Q-learning targets (old parameters). The robustness of the approach combining experience replay and fixed Q-learning target was demonstrated on about 50 Atari games (same algorithm). # How much does DQN help? | | Replay | Replay | No replay | No replay | |----------------|---------|------------|-----------|------------| | | Fixed-Q | Q-learning | Fixed-Q | Q-learning | | Breakout | 316.81 | 240.73 | 10.16 | 3.17 | | Enduro | 1006.3 | 831.25 | 141.89 | 29.1 | | River Raid | 7446.62 | 4102.81 | 2867.66 | 1453.02 | | Seaquest | 2894.4 | 822.55 | 1003 | 275.81 | | Space Invaders | 1088.94 | 826.33 | 373.22 | 301.99 | #### **Linear Least Squares Prediction** Experience replay finds least squares solution, but it may take many iterations. Using linear value function approximation $\hat{v}(s, w) = x(s)^{\mathsf{T}} w$. We can solve the least squares solution directly # Linear Least Squares Prediction (2) ■ At minimum of $LS(\mathbf{w})$, the expected update must be zero $$egin{aligned} \mathbb{E}_{\mathcal{D}}\left[\Delta\mathbf{w} ight] &= 0 \ lpha \sum_{t=1}^{T} \mathbf{x}(s_t)(v_t^{\pi} - \mathbf{x}(s_t)^{ op}\mathbf{w}) &= 0 \ \sum_{t=1}^{T} \mathbf{x}(s_t)v_t^{\pi} &= \sum_{t=1}^{T} \mathbf{x}(s_t)\mathbf{x}(s_t)^{ op}\mathbf{w} \ \mathbf{w} &= \left(\sum_{t=1}^{T} \mathbf{x}(s_t)\mathbf{x}(s_t)^{ op} ight)^{-1} \sum_{t=1}^{T} \mathbf{x}(s_t)v_t^{\pi} \end{aligned}$$ - For N features, direct solution time is $O(N^3)$ - Incremental solution time is $O(N^2)$ using Shermann-Morrison However, we do not know true values v_t^{π} so in practice, In practice, our "training data" must use noisy or biased samples of v_t^{π} - LSMC Least Squares Monte-Carlo uses return G_t - LSTD Least Squares Temporal-Difference uses TD target $R_{t+1} + \gamma$. $\hat{v}(S_{t+1}, w)$ - LSTD(λ) Least Squares TD(λ) uses λ -return G_t^{λ} In each case solve directly for fixed point of MC / TD / TD(λ) # Linear Least Squares Prediction Algorithms (2) LSMC $$0 = \sum_{t=1}^{T} \alpha(G_t - \hat{v}(S_t, \mathbf{w})) \mathbf{x}(S_t)$$ $$\mathbf{w} = \left(\sum_{t=1}^{T} \mathbf{x}(S_t) \mathbf{x}(S_t)^{\top}\right)^{-1} \sum_{t=1}^{T} \mathbf{x}(S_t) G_t$$ LSTD $$0 = \sum_{t=1}^{T} \alpha(R_{t+1} + \gamma \hat{v}(S_{t+1}, \mathbf{w}) - \hat{v}(S_t, \mathbf{w})) \mathbf{x}(S_t)$$ $$\mathbf{w} = \left(\sum_{t=1}^{T} \mathbf{x}(S_t) (\mathbf{x}(S_t) - \gamma \mathbf{x}(S_{t+1}))^{\top}\right)^{-1} \sum_{t=1}^{T} \mathbf{x}(S_t) R_{t+1}$$ LSTD(λ) $$0 = \sum_{t=1}^{T} \alpha \delta_t E_t$$ $$\mathbf{w} = \left(\sum_{t=1}^{T} E_t (\mathbf{x}(S_t) - \gamma \mathbf{x}(S_{t+1}))^{\top}\right)^{-1} \sum_{t=1}^{T} E_t R_{t+1}$$ # Convergence of Linear Least Squares Prediction Algorithms | On/Off-Policy | Algorithm | Table Lookup | Linear | Non-Linear | |---------------|-----------|--------------|----------|------------| | | MC | ✓ | ✓ | ✓ | | On Dollar | LSMC | \checkmark | ✓ | _ | | On-Policy | TD | ✓ | ✓ | × | | | LSTD | ✓ | ✓ | _ | | Off-Policy | MC | ✓ | ✓ | 1 | | | LSMC | ✓ | ✓ | _ | | | TD | \checkmark | X | × | | | LSTD | ✓ | ✓ | - | ### **Least Squares Control** # Least Squares Policy Iteration Policy evaluation Policy evaluation by least squares Q-learning Policy improvement Greedy policy improvement # Least Squares Action-Value Function Approximation - Approximate action-value function $q_{\pi}(s, a)$ - using linear combination of features $\mathbf{x}(s, a)$ $$\hat{q}(s, a, \mathbf{w}) = \mathbf{x}(s, a)^{\top} \mathbf{w} \approx q_{\pi}(s, a)$$ - Minimise least squares error between $\hat{q}(s, a, \mathbf{w})$ and $q_{\pi}(s, a)$ - from experience generated using policy π - consisting of ⟨(state, action), value⟩ pairs $$\mathcal{D} = \{\langle (s_1, a_1), v_1^{\pi} \rangle, \langle (s_2, a_2), v_2^{\pi} \rangle, ..., \langle (s_T, a_T), v_T^{\pi} \rangle \}$$ ### Least Squares Control - For policy evaluation, we want to efficiently use all experience - For control, we also want to improve the policy - This experience is generated from many policies - So to evaluate $q_{\pi}(S,A)$ we must learn off-policy - We use the same idea as Q-learning: - Use experience generated by old policy $S_t, A_t, R_{t+1}, S_{t+1} \sim \pi_{old}$ - Consider alternative successor action $A' = \pi_{new}(S_{t+1})$ - Update $\hat{q}(S_t, A_t, \mathbf{w})$ towards value of alternative action $R_{t+1} + \gamma \hat{q}(S_{t+1}, A', \mathbf{w})$ # Convergence of Control Algorithms | Algorithm | Table Lookup | Linear | Non-Linear | |---------------------|--------------|-------------|------------| | Monte-Carlo Control | ✓ | (✓) | X | | Sarsa | ✓ | (✓) | × | | Q-learning | ✓ | X | × | | LSPI | ✓ | (✓) | - | $({m \checkmark})=$ chatters around near-optimal value function ### 2. Policy Gradient Methods #### Introduction We will directly parametrise the policy instead of approximating the value function. $$\pi_{\theta}s, a) = \mathbb{P}[a/s, \theta]$$ Advantages of policy-based RL (vs. value-based RL): - Better convergence properties - Effective in high-dimensional or continuous action spaces (in value-based RL, there is a max to calculate, which may be computationnally expensive) - Can learn stochastic policies #### Disadvantages: - Typically converge to a local rather than global optimum - Evaluating a policy is typically inefficient and high variance #### Aliased Gridworld Example When state-aliasing occurs (i.e. the agent cannot differentiate 2 states, i.e. same feature vector for 2 different states), a stochastic policy does better than a deterministic policy. Policy-based RL can learn the optimal stochastic policy. Partial observation (POMDP) can be due to the limit of the feature vector representation. Note that we call aliasing an effect that causes different signals to become indistinguishable when sampled. #### **Policy Search** The main question is how we measure the quality of a policy π_{θ} . First, we need to define the **policy objective function** $J(\theta)$ - several cases: - In episodic environments: we can use the start value $J_1^{\theta} = V^{\pi_{\theta}}(s_1) = \mathbb{E}_{\pi_{\theta}}[v_1]$ - In continuing environments: - we can use the average value for all the states $J_{avV}(\theta) = \sum_s d^{\pi_{\theta}}(s) V^{\pi_{\theta}}(s)$ or the average reward per time-step $J_{avR}(\theta) = \sum_s d^{\pi_{\theta}}(s) \sum_a \pi_{\theta}(s,a)$. R_s^a with $d^{\pi_{\theta}}(s)$ the stationary distribution of Markov chain for π_{θ} All follow the same policy gradient. Now we want to optimize the objective function, i.e. find θ that maximizes $J(\theta)$. Policy-based RL is an optimization problem. #### **Approaches** | without gradient | with gradient | |--------------------------------|--------------------| | Hill climbing | Gradient Descent | | Simplex / amoeba / Nelder Mead | Conjugate gradient | | Genetic algorithms | Quasi Newton | Here, we'll consider gradient ascent (maximization). ### **Finite Difference Policy Gradient** Policy gradient algorithms search for a local maximum in $J(\theta)$ by ascending the gradient of the policy, w.r.t. parameters θ $\nabla \theta = \alpha \nabla_{\theta} J(\theta)$ where $\nabla_{\theta} J(\theta)$ is the policy gradient and α a step-size parameter. To evaluate policy gradient of $\pi_{\theta}(s, a)$, we can apply the following method: - For each dimension $k \in [1, n]$ - \circ Estimate kth partial derivative of objective function w.r.t. heta - $\bullet \ \, \text{By perturbing } \theta \text{ by small amount } \varepsilon \text{ in kth dimension } \frac{\partial J(\theta)}{\partial \theta_k} \, \approx \, \frac{J(\theta + \varepsilon u_k) J(\theta)}{\varepsilon}$ where u_k is unit vector with 1 in kth component, 0 elsewhere Uses n evaluations to compute policy gradient in n dimensions This method is simple, noisy, inefficient - but sometimes effective. It works for arbitrary policies, even if policy is not differentiable. ### **Monte Carlo Policy Gradient** #### **Likelihood Ratios** We now compute the policy gradient analytically. We assume policy π_{θ} is differntiable almost everywhere. The goal is to compute $\nabla_{\theta}J(\theta)=\nabla_{\theta}\mathbb{E}_d[v_{\pi_{\theta}}(S)]$. We will use MC samples to compute this gradient. ### Score Function - We now compute the policy gradient analytically - Assume policy π_{θ} is differentiable whenever it is non-zero - lacksquare and we know the gradient $abla_{ heta}\pi_{ heta}(s,a)$ - Likelihood ratios exploit the following identity $$egin{aligned} abla_{ heta}\pi_{ heta}(s, a) &= \pi_{ heta}(s, a) rac{ abla_{ heta}\pi_{ heta}(s, a)}{\pi_{ heta}(s, a)} \ &= \pi_{ heta}(s, a) abla_{ heta} \log \pi_{ heta}(s, a) \end{aligned}$$ ■ The score function is $\nabla_{\theta} \log \pi_{\theta}(s, a)$ By rewriting the gradient with the score function, we can now easily calculate the expectation. The gradient of the policy is equal to the policy times the score function. The score function is the gradient of the log of the policy. Let's use 2 examples: Softmax policy Let's assume a feature vector $\phi(s,a)$ and θ some parameters. Each action is given a weight using linear combinations of features $\phi(s,a)^{\mathsf{T}}\theta$. Then, we convert these weights into probabilities by exponentiating them and dividing them by a nornalizing factor (sum of exponentiated action weights). $$\pi_{\theta}(s, a) = e^{\phi(s, a)^{\mathsf{T}}\theta} / \sum_{b} e^{\phi(s, b)^{\mathsf{T}}.\theta}$$ Score function = $\nabla_{\theta} log \pi_{\theta}(s, a) = \phi(s, a) - \mathbb{E}_{\pi_{\theta}}[\phi(s, .)]$ (formula explained here here) **Interpretation:** The score function, for a given state, is equal to the feature of the action we took minus the average of all the features of the actions we might have taken. Gaussian policy In continuous action spaces, a Gaussian policy is natural. Mean is a linear combination of state features $\mu(s) = \phi(s)^{\mathsf{T}}\theta$ Variance may be fixed σ^2 , or can also parametrised. The policy is Gaussian, $a \sim N(\mu(s), \sigma^2)$ We pick the mean and add some noise to be stochastic. Score function = $$\nabla_{\theta} log \pi_{\theta}(s, a) = \frac{(a - \mu(s)).\phi(s)}{\sigma^2}$$ Again, the score function is quite intuitive: it is the action we actually took minus the mean, multipled by the feature, scaled by the variance. #### **Policy Gradient Theorem** #### **One-step MDP** # One-Step MDPs - Consider a simple class of one-step MDPs - Starting in state $s \sim d(s)$ - lacksquare Terminating after one time-step with reward $r=\mathcal{R}_{s,a}$ - Use likelihood ratios to compute the policy gradient $$egin{aligned} J(heta) &= \mathbb{E}_{\pi_{ heta}}\left[r ight] \ &= \sum_{s \in \mathcal{S}} d(s) \sum_{a \in \mathcal{A}} \pi_{ heta}(s,a) \mathcal{R}_{s,a} \ abla_{ heta} J(heta) &= \sum_{s \in \mathcal{S}} d(s) \sum_{a \in \mathcal{A}} \pi_{ heta}(s,a) abla_{ heta} \log \pi_{ heta}(s,a) \mathcal{R}_{s,a} \ &= \mathbb{E}_{\pi_{ heta}}\left[abla_{ heta} \log \pi_{ heta}(s,a) r ight] \end{aligned}$$ Here, we can see how easy it is to express the gradient of the objective function with an expectation of the policy, thanks to the "trick" of the likelihhod ratio (multiplying and dividing by the policy) This one-step MDP shows that the adjustment goes in the direction of the reward times the score function #### Theorem and Reinforce algorithm # Policy Gradient Theorem - The policy gradient theorem generalises the likelihood ratio approach to multi-step MDPs - Replaces instantaneous reward r with long-term value $Q^{\pi}(s, a)$ - Policy gradient theorem applies to start state objective, average reward and average value objective ### Theorem For any differentiable policy $\pi_{\theta}(s, a)$, for any of the policy objective functions $J = J_1, J_{avR}, \text{ or } \frac{1}{1-\gamma}J_{avV}$, the policy gradient is $$abla_{ heta} J(heta) = \mathbb{E}_{\pi_{ heta}} \left[abla_{ heta} \log \pi_{ heta}(s, a) \; Q^{\pi_{ heta}}(s, a) ight]$$ Compared to the one-step MDP, we replaced the reward by the long-term value $Q^{\pi}(s,a)$ # Monte-Carlo Policy Gradient (REINFORCE) - Update parameters by stochastic gradient ascent - Using policy gradient theorem - lacksquare Using return v_t as an unbiased sample of $Q^{\pi_{ heta}}(s_t,a_t)$ $$\Delta\theta_t = \alpha\nabla_\theta \log \pi_\theta(s_t, a_t)v_t$$ ### function REINFORCE ``` Initialise \theta arbitrarily for each episode \{s_1, a_1, r_2, ..., s_{T-1}, a_{T-1}, r_T\} \sim \pi_{\theta} do for t=1 to T-1 do \theta \leftarrow \theta + \alpha \nabla_{\theta} \log \pi_{\theta}(s_t, a_t) v_t end for end for return \theta ``` The main issues of this MC policy gradient algorithm is its high variance and very low speed. How to make it more efficient? First, we'll reduce the variance using a critic. ### **Actor-Critic Policy Gradient** Actor-critic algorithms maintain two sets of parameters: - Critic: Updates action-value function parameters w (instead of calculating directly the return) - Actor: Updates policy parameters θ , in direction suggested by critic Actor-critic algorithms follow an approximate policy gradient. $$\nabla_{\theta} J(\theta) \approx \mathbb{E}_{\pi_{\theta}} [\nabla_{\theta} log_{\pi_{\theta}}(s, a). Q_{w}(s, a)]$$ $$\nabla_{\theta} = \alpha. \nabla_{\theta} log_{\pi_{\theta}}(s, a). Q_{w}(s, a)$$ The critic is solving a familiar problem: policy evaluation, i.e. how good is policy π_{θ} for current parameters θ ?. Here, we do not aim at improving the action-value function. In order to estimate the Action-value function, we can use Monte-Carlo policy evaluation Temporal-Difference learning, $TD(\lambda)$ or least-squares policy evaluation. ### Action-Value Actor-Critic - Simple actor-critic algorithm based on action-value critic - Using linear value fn approx. $Q_w(s, a) = \phi(s, a)^\top w$ Critic Updates w by linear TD(0) Actor Updates θ by policy gradient ``` function QAC Initialise s, \theta Sample a \sim \pi_{\theta} for each step do Sample reward r = \mathcal{R}_{s}^{a}; sample transition s' \sim \mathcal{P}_{s,\cdot}^{a} Sample action a' \sim \pi_{\theta}(s', a') \delta = r + \gamma Q_{w}(s', a') - Q_{w}(s, a) \theta = \theta + \alpha \nabla_{\theta} \log \pi_{\theta}(s, a) Q_{w}(s, a) w \leftarrow w + \beta \delta \phi(s, a) a \leftarrow a', s \leftarrow s' end for end function ``` ### **Compatible Function Approximation** ### **Advantage Function Critic** Introducing the advantage function helps reduce the variance. The advantage function represents the benefit of taking an action at a given state vs. the average value of the state. If the value is positive, we will move towards this direction. ### Reducing Variance Using a Baseline - We subtract a baseline function B(s) from the policy gradient - This can reduce variance, without changing expectation $$egin{aligned} \mathbb{E}_{\pi_{ heta}}\left[abla_{ heta}\log\pi_{ heta}(s,a)B(s) ight] &= \sum_{s\in\mathcal{S}}d^{\pi_{ heta}}(s)\sum_{a} abla_{ heta}\pi_{ heta}(s,a)B(s) \ &= \sum_{s\in\mathcal{S}}d^{\pi_{ heta}}B(s) abla_{ heta}\sum_{a\in\mathcal{A}}\pi_{ heta}(s,a) \ &= 0 \end{aligned}$$ - lacksquare A good baseline is the state value function $B(s) = V^{\pi_{\theta}}(s)$ - So we can rewrite the policy gradient using the advantage function $A^{\pi_{\theta}}(s,a)$ $$egin{aligned} A^{\pi_{ heta}}(s,a) &= Q^{\pi_{ heta}}(s,a) - V^{\pi_{ heta}}(s) \ abla_{ heta} J(heta) &= \mathbb{E}_{\pi_{ heta}}\left[abla_{ heta} \log \pi_{ heta}(s,a) \ A^{\pi_{ heta}}(s,a) ight] \end{aligned}$$ The critic should estimate the advantage function, for example, by: - estimating $V^{\pi_{\theta}}(s)$ and $Q^{\pi_{\theta}}(s,a)$ - using 2 function approximators and 2 parameter vectors - updating both value functions by e.g. TD-learning There is an easier way (and more used): we can use the TD-error to compute the policy gradient (because TD-error is an unbiased estimate of the advantage function - in other words, the expected value of the TD-error is equal to the advantage function). The main benefit is that we don't need to calculate Q, just V. # Estimating the Advantage Function (2) • For the true value function $V^{\pi_{\theta}}(s)$, the TD error $\delta^{\pi_{\theta}}$ $$\delta^{\pi_{\theta}} = r + \gamma V^{\pi_{\theta}}(s') - V^{\pi_{\theta}}(s)$$ is an unbiased estimate of the advantage function $$egin{aligned} \mathbb{E}_{\pi_{ heta}}\left[\delta^{\pi_{ heta}}|s,a ight] &= \mathbb{E}_{\pi_{ heta}}\left[r+\gamma V^{\pi_{ heta}}(s')|s,a ight] - V^{\pi_{ heta}}(s) \ &= Q^{\pi_{ heta}}(s,a) - V^{\pi_{ heta}}(s) \ &= A^{\pi_{ heta}}(s,a) \end{aligned}$$ ■ So we can use the TD error to compute the policy gradient $$\nabla_{\theta} J(\theta) = \mathbb{E}_{\pi_{\theta}} \left[\nabla_{\theta} \log \pi_{\theta}(s, a) \ \delta^{\pi_{\theta}} \right]$$ ■ In practice we can use an approximate TD error $$\delta_{v} = r + \gamma V_{v}(s') - V_{v}(s)$$ ■ This approach only requires one set of critic parameters v ### **Eligibility Traces** ### Critics at Different Time-Scales - Critic can estimate value function $V_{\theta}(s)$ from many targets at different time-scales From last lecture... - For MC, the target is the return v_t $$\Delta\theta = \alpha(\mathbf{v_t} - V_{\theta}(s))\phi(s)$$ • For TD(0), the target is the TD target $r + \gamma V(s')$ $$\Delta\theta = \alpha(\mathbf{r} + \gamma \mathbf{V}(\mathbf{s}') - \mathbf{V}_{\theta}(\mathbf{s}))\phi(\mathbf{s})$$ • For forward-view TD(λ), the target is the λ -return v_t^{λ} $$\Delta \theta = \alpha (v_t^{\lambda} - V_{\theta}(s)) \phi(s)$$ ■ For backward-view $TD(\lambda)$, we use eligibility traces $$egin{aligned} \delta_t &= r_{t+1} + \gamma V(s_{t+1}) - V(s_t) \ e_t &= \gamma \lambda e_{t-1} + \phi(s_t) \ \Delta heta &= lpha \delta_t e_t \end{aligned}$$ ### Actors at Different Time-Scales ■ The policy gradient can also be estimated at many time-scales $$abla_{ heta} J(heta) = \mathbb{E}_{\pi_{ heta}} \left[abla_{ heta} \log \pi_{ heta}(s, a) \ A^{\pi_{ heta}}(s, a) ight]$$ Monte-Carlo policy gradient uses error from complete return $$\Delta \theta = \alpha(\mathbf{v_t} - \mathbf{V_v}(\mathbf{s_t})) \nabla_{\theta} \log \pi_{\theta}(\mathbf{s_t}, \mathbf{a_t})$$ Actor-critic policy gradient uses the one-step TD error $$\Delta\theta = \alpha(\mathbf{r} + \gamma V_{\mathbf{v}}(\mathbf{s}_{t+1}) - V_{\mathbf{v}}(\mathbf{s}_t))\nabla_{\theta}\log \pi_{\theta}(\mathbf{s}_t, \mathbf{a}_t)$$ ### Policy Gradient with Eligibility Traces ■ Just like forward-view $TD(\lambda)$, we can mix over time-scales $$\Delta \theta = \alpha (\mathbf{v_t^{\lambda}} - V_{\mathbf{v}}(s_t)) \nabla_{\theta} \log \pi_{\theta}(s_t, a_t)$$ - lacksquare where $v_t^\lambda V_ u(s_t)$ is a biased estimate of advantage fn - Like backward-view $TD(\lambda)$, we can also use eligibility traces - By equivalence with TD(λ), substituting $\phi(s) = \nabla_{\theta} \log \pi_{\theta}(s, a)$ $$egin{aligned} \delta &= r_{t+1} + \gamma V_{\mathcal{V}}(s_{t+1}) - V_{\mathcal{V}}(s_t) \ e_{t+1} &= \lambda e_t + abla_{ heta} \log \pi_{ heta}(s, a) \ \Delta heta &= lpha \delta e_t \end{aligned}$$ ■ This update can be applied online, to incomplete sequences ### **Deterministic Policy Gradient Theorem (Actor-Critic)** Continuous action spaces Scales well to high-dimensions #### **Natural Policy Gradient** - Gradient ascent algorithms can follow any ascent direction - A good ascent direction can significantly speed convergence - Also, a policy can often be reparametrised without changing action probabilities - For example, increasing score of all actions in a softmax policy - The vanilla gradient is sensitive to these reparametrisations ### Summary of Policy Gradient Algorithms ■ The policy gradient has many equivalent forms ``` \begin{split} \nabla_{\theta} J(\theta) &= \mathbb{E}_{\pi_{\theta}} \left[\nabla_{\theta} \log \pi_{\theta}(s, a) \ \textit{v}_{t} \right] & \text{REINFORCE} \\ &= \mathbb{E}_{\pi_{\theta}} \left[\nabla_{\theta} \log \pi_{\theta}(s, a) \ \textit{Q}^{\textit{w}}(s, a) \right] & \text{Q Actor-Critic} \\ &= \mathbb{E}_{\pi_{\theta}} \left[\nabla_{\theta} \log \pi_{\theta}(s, a) \ \textit{A}^{\textit{w}}(s, a) \right] & \text{Advantage Actor-Critic} \\ &= \mathbb{E}_{\pi_{\theta}} \left[\nabla_{\theta} \log \pi_{\theta}(s, a) \ \delta \right] & \text{TD Actor-Critic} \\ &= \mathbb{E}_{\pi_{\theta}} \left[\nabla_{\theta} \log \pi_{\theta}(s, a) \ \delta e \right] & \text{TD}(\lambda) \ \text{Actor-Critic} \\ &= \mathbb{E}_{\pi_{\theta}} \left[\nabla_{\theta} \log \pi_{\theta}(s, a) \ \delta e \right] & \text{Natural Actor-Critic} \end{split} ``` - Each leads a stochastic gradient ascent algorithm - Critic uses policy evaluation (e.g. MC or TD learning) to estimate $Q^{\pi}(s, a)$, $A^{\pi}(s, a)$ or $V^{\pi}(s)$ ### 3. Integrating Learning and Planning #### Introduction In previous lessons, we learnt policy directly from experience or learnt value function directly from experience. Now we'll learn model directly from experience and use planning to construct a value function or policy. We'll aslo integrate learning and planning into a single architecture. Learning about a model is about learning the transitions from state to state and the rewards. #### Model-Free RL: - No model - Learn value function (and/or policy) from experience #### Model-Based RL: - · Learn a model from experience - Plan value function (and/or policy) from model At some stage, the model enables the agent to improve its policy without interacting with the environment. ### **Model-Based Reinforcement Learning** #### Learning a model # Model-Based RL #### Advantages: - Can efficiently learn model by supervised learning methods - Can reason about model uncertainty #### Disadvantages: • First learn a model, then construct a value function => two sources of approximation error # What is a Model? - A model \mathcal{M} is a representation of an MDP $\langle \mathcal{S}, \mathcal{A}, \mathcal{P}, \mathcal{R} \rangle$, parametrized by η - We will assume state space S and action space A are known - So a model $\mathcal{M} = \langle \mathcal{P}_{\eta}, \mathcal{R}_{\eta} \rangle$ represents state transitions $\mathcal{P}_{\eta} \approx \mathcal{P}$ and rewards $\mathcal{R}_{\eta} \approx \mathcal{R}$ $$S_{t+1} \sim \mathcal{P}_{\eta}(S_{t+1} \mid S_t, A_t) \ R_{t+1} = \mathcal{R}_{\eta}(R_{t+1} \mid S_t, A_t)$$ Typically assume conditional independence between state transitions and rewards $$\mathbb{P}\left[S_{t+1}, R_{t+1} \mid S_{t}, A_{t}\right] = \mathbb{P}\left[S_{t+1} \mid S_{t}, A_{t}\right] \mathbb{P}\left[R_{t+1} \mid S_{t}, A_{t}\right]$$ The difference between learning about a reward function and a value function is that a value function would look at all the states and the optimal behavior for all the states, which is not the same as rewards which may only appear in the terminal states. Learning a model is similar as a supervised learning problem: - learning $s, a \rightarrow r$ is a regression problem - learning $s, a \rightarrow s'$ is a density estimation problem Pick loss function, e.g. mean-squared error, KL divergence, ... Find parameters η that minimise empirical loss #### **Examples of model:** - Table Lookup Model - Linear Expectation Model - Linear Gaussian Model - Gaussian Process Model - Deep Belief Network Model - .. #### Process: - · Learn a model - Use the model only to generate samples Sample experience from model $$S_{t+1} \sim P_{\eta}(S_{t+1}/S_t, A_t)$$ $$R_{t+1} = R_{\eta}(R_{t+1}/S_t, A_t)$$ Apply model-free RL to samples, e.g.: Monte-Carlo control, Sarsa Q-learning The main advantage is that sample-based planning methods are often more efficient. Performance of model-based RL is limited to optimal policy for approximate MDP $\langle S, A, P._{\eta}, R_{\eta} \rangle$, i.e. **Model-based RL is only as good as the estimated model**. When the model is inaccurate, planning process will compute a sub-optimal policy. Solution 1: when model is wrong, use model-free RL Solution 2: reason explicitly about model uncertainty ### Planning with a model Dyna **Simulation-Based Search** **Monte Carlo search** MCTS in Go **Temporal-Difference Search** | . Exploration | • | | | |---------------|---|--|--| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |