
Problem with large MDPs: there are too many states and/or actions to store in memory. It is too slow to learn
the value of each state individually

Solution for large MDPs:

Estimate value function with function approximation

or

Generalise from seen states to unseen states

Update parameter w using MC or TD learning

A function can either approximate:

the state value function. input s; output: approx value of v(s)
the state action value function with:

EITHER input state s and action a; output: approx. value of q(s,a) (ACTIONS IN architecture)
OR input state s only; output: all the values of q(s,a) (ACTIONS OUT architecture)

Function approximators can be linear combinations of features, neural networks, decision tree, nearest
neighbour, Fourier / wavelet bases...

Here, we'll consider differentiable function approximators: linear combinations of features and neural
networks.

Furthermore, we require a training method that is suitable for non-stationary, non-iid data (the policy
can evolve and improve during training)

Part II: Reinforcement Learning in Practice

1. Value Function Approximation

(s, w) ≈ (s)v ̂ vπ

(s, a, w) ≈ (s, a)q ̂ qπ

Incremental methods

Gradient Descent

We represent state by a feature vector (a compact way to represent the state):

x(s) =

Summary of targets used:

Feature Vector

⎛

⎝

⎜⎜⎜⎜

(s)x1

.

.
(s)xn

⎞

⎠

⎟⎟⎟⎟

Incremental Prediction Algorithm

Method Target Update Specificities

Generalization /

Monte-Carlo

Monte-Carlo
evaluation
converges to
a local
optimum

TD (0)

Linear TD(0)
converges
(close) to
global
optimum

xxx

Replace by for linear functions

(s)vπ ∇w = α. [(s) − (S, w)]. (S, w)vπ v ̂ ∇w v ̂

Gt ∇w = α. [− (, w)]. (, w)Gt v ̂ St ∇w v ̂ St

+ γ. (, w)Rt+1 v ̂ St+1 ∇w = α. [+ γ. (, w) − (, w)]. (, w)Rt+1 v ̂ St+1 v ̂ St ∇w v ̂ St

TD(λ) Gt+1 ∇w = α. [(S) − (S, w)]. (, w)Gλ
t v ̂ ∇w v ̂ St

(, w)∇w v ̂ St St

Incremental Control Algorithm

TD does not follow the gradient of any objective function This is why TD can diverge when off-policy or using
non-linear function approximation. Gradient TD follows true gradient of projected Bellman error.

Convergence

Gradient descent is simple and appealing but it is not sample efficient. Batch methods seek to find the best
fitting value function given the agent’s experience (“training data”).

Batch Methods

Least Squares Prediction

There exists a very simple solution to find the value function approximator (i.e the parameter vector w so that
). It consists in sampling state,value from experience, i.e. randomizing the state value

(instead of going step by step in the incremental method - the effect is the decorrelation across time-steps)
and re-using experience data multiple times.

= LS(w)wπ argmin
w

DQN uses experience replay and fixed Q-targets.

DQN (Deep Q-Networks)

Note that:

for every batch, we compute the Q-learning target w.r.t old, fixed parameters , which stabilizes the
learning process. If we use the same network, it would be unstable. Every x iterations, we replace the
old network (with fixed parameters) by the current network.
we optimize MSE between Q-network (live parameters) and Q-learning targets (old parameters).

The robustness of the approach combining experience replay and fixed Q-learning target was demonstrated
on about 50 Atari games (same algorithm).

w−

w−

Experience replay finds least squares solution, but it may take many iterations. Using linear value function
approximation . We can solve the least squares solution directly

However, we do not know true values so in practice, In practice, our “training data” must use noisy or

Linear Least Squares Prediction

(s, w) = x(s wv ̂)⊺

vπ
t

biased samples of

LSMC Least Squares Monte-Carlo uses return
LSTD Least Squares Temporal-Difference uses TD target
LSTD(λ) Least Squares TD(λ) uses λ-return

In each case solve directly for fixed point of MC / TD / TD(λ)

vπ
t

Gt
+ γ. (, w)Rt+1 v ̂ St+1

Gλ
t

Least Squares Control

We will directly parametrise the policy instead of approximating the value function.

Advantages of policy-based RL (vs. value-based RL):

Better convergence properties
Effective in high-dimensional or continuous action spaces (in value-based RL, there is a max to
calculate, which may be computationnally expensive)
Can learn stochastic policies

Disadvantages:

Typically converge to a local rather than global optimum
Evaluating a policy is typically inefficient and high variance

When state-aliasing occurs (i.e. the agent cannot differentiate 2 states, i.e. same feature vector for 2 different
states), a stochastic policy does better than a deterministic policy. Policy-based RL can learn the optimal
stochastic policy.

Partial observation (POMDP) can be due to the limit of the feature vector representation.

Note that we call aliasing an effect that causes different signals to become indistinguishable when sampled.

The main question is how we measure the quality of a policy .

First, we need to define the policy objective function - several cases:

In episodic environments: we can use the start value -
In continuing environments:

we can use the average value for all the states -
or the average reward per time-step -

with the stationary distribution of Markov chain for

All follow the same policy gradient.

Now we want to optimize the objective function, i.e. find that maximizes . Policy-based RL is an

2. Policy Gradient Methods

Introduction

s, a) = ℙ[a/s, θ]πθ

Aliased Gridworld Example

Policy Search

πθ

J(θ)

= () = []Jθ
1 V πθ s1 𝔼πθ v1

(θ) = (s) (s)JavV ∑s dπθ V πθ

(θ) = (s) (s, a).JavR ∑s dπθ ∑a πθ Ra
s

(s)dπθ πθ

θ J(θ)

optimization problem.

Approaches

without gradient with gradient

Hill climbing Gradient Descent

Simplex / amoeba / Nelder Mead Conjugate gradient

Genetic algorithms Quasi Newton

Here, we'll consider gradient ascent (maximization).

Policy gradient algorithms search for a local maximum in by ascending the gradient of the policy, w.r.t.
parameters where is the policy gradient and a step-size parameter.

To evaluate policy gradient of , we can apply the following method:

For each dimension k ∈ [1, n]

Estimate kth partial derivative of objective function w.r.t.
By perturbing by small amount in kth dimension

where is unit vector with 1 in kth component, 0 elsewhere

Uses n evaluations to compute policy gradient in n dimensions

This method is simple, noisy, inefficient - but sometimes effective. It works for arbitrary policies, even if policy
is not differentiable.

We now compute the policy gradient analytically. We assume policy is differntiable almost everywhere.
The goal is to compute . We will use MC samples to compute this gradient.

Finite Difference Policy Gradient

J(θ)
θ ∇θ = α J(θ)∇θ J(θ)∇θ α

(s, a)πθ

θ
θ ϵ ≈∂J(θ)

∂θk

J(θ+ϵ)−J(θ)uk
ϵ

uk

Monte Carlo Policy Gradient

Likelihood Ratios

πθ
J(θ) = [(S)]∇θ ∇θ 𝔼d vπθ

By rewriting the gradient with the score function, we can now easily calculate the expectation.

The gradient of the policy is equal to the policy times the score function. The score function is the gradient of
the log of the policy.

Let's use 2 examples:

Softmax policy

Let's assume a feature vector and some parameters. Each action is given a weight using linear
combinations of features . Then, we convert these weights into probabilities by exponentiating them
and dividing them by a nornalizing factor (sum of exponentiated action weights).

Score function =

(formula explained here here)

Interpretation: The score function, for a given state, is equal to the feature of the action we took minus the
average of all the features of the actions we might have taken.

Gaussian policy

In continuous action spaces, a Gaussian policy is natural. Mean is a linear combination of state features
 Variance may be fixed , or can also parametrised. The policy is Gaussian,

ϕ(s, a) θ
ϕ(s, a θ)⊺

(s, a) = /πθ eϕ(s,a θ)⊺ ∑b eϕ(s,b .θ)⊺

log (s, a) = ϕ(s, a) − [ϕ(s, .)]∇θ πθ 𝔼πθ

μ(s) = ϕ(s θ)⊺ σ2

a ∼ N(μ(s),)σ2

http://www.machinelearning.org/archive/icml2009/papers/500.pdf

We pick the mean and add some noise to be stochastic.

Score function =

Again, the score function is quite intuitive : it is the action we actually took minus the mean, multipled by the
feature, scaled by the variance.

Here, we can see how easy it is to express the gradient of the objective function with an expectation of the
policy, thanks to the "trick" of the likelihhod ratio (multiplying and dividing by the policy)

This one-step MDP shows that the adjustment goes in the direction of the reward times the score function

log (s, a) =∇θ πθ
(a−μ(s)).ϕ(s)

σ2

Policy Gradient Theorem

One-step MDP

Theorem and Reinforce algorithm

Compared to the one-step MDP, we replaced the reward by the long-term value (s, a)Qπ

The main issues of this MC policy gradient algorithm is its high variance and very low speed. How to make it
more efficient? First, we'll reduce the variance using a critic.

Actor-critic algorithms maintain two sets of parameters:

Critic: Updates action-value function parameters w (instead of calculating directly the return)
Actor: Updates policy parameters , in direction suggested by critic

Actor-critic algorithms follow an approximate policy gradient.

The critic is solving a familiar problem: policy evaluation, i.e. how good is policy for current parameters ?.
Here, we do not aim at improving the action-value function. In order to estimate the Action-value function, we
can use Monte-Carlo policy evaluation Temporal-Difference learning, or least-squares policy
evaluation.

Actor-Critic Policy Gradient

θ

J(θ) ≈ [lo (s, a). (s, a)]∇θ 𝔼πθ ∇θ gπθ Qw

= α. lo (s, a). (s, a)∇θ ∇θ gπθ Qw

πθ θ

TD(λ)

Introducing the advantage function helps reduce the variance. The advantage function represents the benefit
of taking an action at a given state vs. the average value of the state. If the value is positive, we will move
towards this direction.

Compatible Function Approximation

Advantage Function Critic

The critic should estimate the advantage function, for example, by:

estimating and
using 2 function approximators and 2 parameter vectors
updating both value functions by e.g. TD-learning

There is an easier way (and more used): we can use the TD-error to compute the policy gradient (because
TD-error is an unbiased estimate of the advantage function - in other words, the expected value of the TD-
error is equal to the advantage function). The main benefit is that we don't need to calculate Q, just V.

(s)V πθ (s, a)Qπθ

Eligibility Traces

Continuous action spaces Scales well to high-dimensions

Gradient ascent algorithms can follow any ascent direction
A good ascent direction can significantly speed convergence
Also, a policy can often be reparametrised without changing action probabilities
For example, increasing score of all actions in a softmax policy
The vanilla gradient is sensitive to these reparametrisations

Deterministic Policy Gradient Theorem (Actor-Critic)

Natural Policy Gradient

In previous lessons, we learnt policy directly from experience or learnt value function directly from experience.
Now we'll learn model directly from experience and use planning to construct a value function or policy. We'll
aslo integrate learning and planning into a single architecture. Learning about a model is about learning the
transitions from state to state and the rewards.

Model-Free RL:

No model
Learn value function (and/or policy) from experience

Model-Based RL:

Learn a model from experience
Plan value function (and/or policy) from model

At some stage, the model enables the agent to improve its policy without interacting with the environment.

3. Integrating Learning and Planning

Introduction

Model-Based Reinforcement Learning

Learning a model

Advantages:

Can efficiently learn model by supervised learning methods
Can reason about model uncertainty

Disadvantages:

First learn a model, then construct a value function => two sources of approximation error

The difference between learning about a reward function and a value function is that a value function would
look at all the states and the optimal behavior for all the states, which is not the same as rewards which may
only appear in the terminal states.

Learning a model is similar as a supervised learning problem:

learning is a regression problem
learning is a density estimation problem

Pick loss function, e.g. mean-squared error, KL divergence, ... Find parameters that minimise empirical loss

Examples of model:

Table Lookup Model
Linear Expectation Model
Linear Gaussian Model
Gaussian Process Model
Deep Belief Network Model
...

Process:

Learn a model
Use the model only to generate samples

s, a → r
s, a → s′

η

Sample experience from model

Apply model-free RL to samples, e.g.: Monte-Carlo control, Sarsa Q-learning

The main advantage is that sample-based planning methods are often more efficient.

Performance of model-based RL is limited to optimal policy for approximate MDP , i.e. Model-
based RL is only as good as the estimated model. When the model is inaccurate, planning process will
compute a sub-optimal policy.

Solution 1: when model is wrong, use model-free RL Solution 2: reason explicitly about model uncertainty

∼ (/ ,)St+1 Pη St+1 St At

= (/ ,)Rt+1 Rη Rt+1 St At

⟨S, A, P , ⟩.η Rη

Planning with a model

Dyna

Simulation-Based Search

Monte Carlo search

MCTS in Go

Temporal-Difference Search

4. Exploration and Exploitation

5. Case study - RL in games

