
The description below is mainly made of notes from the original paper here and the following
documents:

Berkeley implementation
Medium
OpenAI - Spinning Up

SAC is an off-policy actor-critic algorithm based on the maximum entropy RL framework

The maximum entropy objective has a number of conceptual and practical advantages. First, the
policy is incentivized to explore more widely, while giving up on clearly unpromising avenues.
Second, the policy can capture multiple modes of near-optimal behavior. In problem settings
where multiple actions seem equally attractive, the policy will commit equal probability mass to
those actions. In practice, we observe improved exploration with this objective

The actor aims to simultaneously maximize expected return and entropy We extend SAC to
incorporate a number of modifications that accelerate training and improve stability with
respect to the hyperparameters, including a constrained formulation that automatically
tunes the temperature hyperparameter.

Our soft actor-critic algorithm incorporates three key ingredients:

1. an actor-critic architecture with separate policy and value function networks
2. an off-policy formulation that enables reuse of previously collected data for efficiency
3. entropy maximization to encourage stability and exploration.

SAC is a loop of policy evaluation through Q-value updates of the critic (based on the modified
objective including the entropy term) and policy improvement updates (actor). This loop is called
a policy iteration.

Soft Actor-Critic (SAC) Algorithm

Description of SAC

https://arxiv.org/pdf/1812.05905.pdf
https://github.com/rail-berkeley/softlearning
https://towardsdatascience.com/in-depth-review-of-soft-actor-critic-91448aba63d4
https://spinningup.openai.com/en/latest/algorithms/sac.html

We apply the Bellman operator, augmented by an entropy term

where

We define the following objective policy;

Alpha term represents the "entropy temperature," i.e. how much we weight the "randomness" of
our policy versus the environment reward.

Alpha can be tuned automatically. Alpha varies according to the magnitude of the rewards
(different by task but also durng training. Instead of tuning the temperature manually, we treat it
as a constraint by setting a target temperature (another hyperparameter though!). "Our aim is to
find a stochastic policy with maximal expected return that satisfies a minimum expected entropy
constraint" See page 7 of the paper.

We update the policy distribution towards the softmax distribution for the current Q function. We
want to minimize the distance (“divergence”) between the two distributions. This is accomplished
by minimizing the Kullback-Leibler (KL) divergence between the two distributions:

Haarnoja et al. uses the “re-parameterization trick” on the policy output to get a low variance
estimator; in particular, we represent the actions as the hyperbolic tangent (tanh) applied to z-
values sampled from the mean and log standard deviation outputted by the policy neural

Policy Evaluation - soft Q-Update

Q(,) = r(,) + γ [V(]T π st at st at 𝔼 −>pst+1 st+1

V() = [Q(,) − α. logπ(,)]st 𝔼 −>πat st at at st

Policy Improvement

network.

Step by step:

We do a forward pass on our netwro to convert a state into the mean, log std of a state
We sample an action from a normal distribution parameterized by mean,std
We squeeze the action value betwen -1 and 1 with Tanh
We calculate log_pi (see formula below)

Explanations from the paper: we apply an invertible squashing function (tanh) to the Gaussian
samples, and employ the change of variables formula to compute the likelihoods of the bounded
actions. In the other words, let u ∈ be a random variable and μ(u|s) the corresponding
density with infinite support. Then a = tanh(u), where tanh is applied elementwise, is a random
variable with support in (−1, 1).

RD

